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Background



What are Service Function Chains (SFCs)?

e SFCs combine Network Function Virtualisation and Software-
Defined Networking and create a service overlay over the physical
network.

A traditional network: A Service Function Chain:

Service Overlay




Optimisation Challenges
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1. Chain composition 2. VNF embedding 3. Link embedding
How should the Virtual Network Where should the VNFs be How should the VNFs be linked for
Functions (VNFs) be ordered for deployed for optimal optimal performance?
optimal performance? performance?

* This is an NP-hard optimisation problem [1].

[1]J. Gil Herrera and J. F. Botero, "Resource Allocation in NFV: A Comprehensive Survey," in [EEE Transactions on Network
and Service Management, vol. 13, no. 3, pp. 518-532, Sept. 2016, doi: 10.1109/TNSM.2016.2598420.




Genetic Algorithm

Fitmess of individuals are
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Existing Tools



How to Experiment?

Flexibility & Scalability
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Tools used in literature

Tools used to evaluate solutions to the NFV-RA problem
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Research Gap

* Simulators such as ALEVIN do not provide an accurate evaluation
of fithess.

 Testbeds are not scalable.

* Emulators such as Mininet need additional code to support SFC
experiments.

There exists no SFC-specific emulator.



https://github.com/Project-Kelvin/OpenRASE
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A Docker container that emulates a server. This
container runs a Docker-in-Docker image
allowing VNFs to be nested as Docker
containers. “

Service Function Forwarder
SFF forwards the traffic to a specific
VNF in the host. Each host has its
own dedicated SFF running in a
separate Docker container.




Evaluation



Experimental Goals

* We demonstrated that:
* OpenRASE can replicate ALEVIN for static metrics
* OpenRASE can run experiments and produce dynamic metrics



Experimental Design
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* Four unique SFC Requests (SFCRs) were de.si.ghe'd. .a'sed oh |
examples from the literature.

* The greedy Dijkstra algorithm available by default in ALEVIN was
used to embed SFCs.

* The acceptance ratio (no. of SFCRs that can be embedded divided
by the total no. of SFCRs received), CPU usage of hosts and traffic
latency of SFCs were measured.

* 8 experiments were carried out by varying the no. of SFCRs and
the no. of CPUs available to hosts.



Results

1 . . SFCRs Submitted Acceptance Ratio Deployment Time (s)
Experiment CFUs per host Duplicates SFCRs OpenRASE ALEVIN OpenRASE
1 2 | 4 1 1 34.02
2 2 2 8 1 1 44.43
3 2 4 16 1 1 75.76
4 2 8 32 0.75 0.75 90.81
5 4 I 4 1 1 28.58
6 4 2 8 1 1 34.39
7 4 4 16 1 1 55.04
8 4 8 32 1 1 110.69

* OpenRASE was able to replicate ALEVIN’s outputs when it comes
to static metrics like acceptance ratio.

* ALEVIN, being a simulator, cannot measure dynamic metrics like
CPU usage and latency, which OpenRASE is able to.



CPU Usage
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Traffic Latency
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Summary

* Optimally embedding SFCs is NP-hard.

* GAs one way of solving this problem. But they require a way to
evaluate solution fithess.

* We need an emulator as they are more scalable than testbeds and
more accurate than simulators.

* We created OpenRASE to emulate SFCs.



OpenRASE is Open Source!

* You can use it for your SFC experiments.
* Your contributions are welcome!

https://github.com/Project-Kelvin/OpenRASE



Questions



Thank You



Appendix



Why Genetic Algorithms?

* |Itis a heuristic algorithm that can solve NP-hard problems.
* |t can adapt to an uncertain/unknown environment.

* Itis an underutilised algorithm in the SFC realm. Only 12/163
surveyed studies use GAs.




ALEVIN vs. OpenRASE

Test Simulated Emulated.

Hosts Simulated Docker containers as hosts

Switches Simulated Open vSwitches using Mininet

VNFs Simulated & abstract 7 distinct, real VNFs. Allows addition of
more VNFs

VNF resource requirements Arbitrary, static, & user-specified VNF demands are calibrated through
benchmarking

VNF behavior Static Dynamic based on input traffic

Deployment Simulated Emulated real code deployment using
Docker containers and Mininet

Programming language Java based Python based

Tool resource requirements Low High

Use case Rapid designing and prototyping High-fidelity testing

New resource demands and metrics Can be added Adding new demands and metrics need

changes to the emulator
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