University

of Glasgow

- Emulatio

Theviyanthan K.

Theviyanthan Krishnamohan (Thivi)
Third-year PhD student,

University of Glasgow.
t.krishnamohan.1@research.gla.ac.uk

OLHIIE ©
s
i
e LS Rt
& Wi

Background

What are Service Function Chains (SFCs)?

e SFCs combine Network Function Virtualisation and Software-
Defined Networking and create a service overlay over the physical
network.

A traditional network: A Service Function Chain:

Service Overlay

Optimisation Challenges

1]
i —— B L ——
DS Load Balancer

1. Chain composition 2. VNF embedding 3. Link embedding
How should the Virtual Network Where should the VNFs be How should the VNFs be linked for
Functions (VNFs) be ordered for deployed for optimal optimal performance?
optimal performance? performance?

* This is an NP-hard optimisation problem [1].

[1]J. Gil Herrera and J. F. Botero, "Resource Allocation in NFV: A Comprehensive Survey," in [EEE Transactions on Network
and Service Management, vol. 13, no. 3, pp. 518-532, Sept. 2016, doi: 10.1109/TNSM.2016.2598420.

Genetic Algorithm

Fitmess of individuals are
evaluated by by performimg
online experiomentation.

-- -

- -~

A PoPulaﬁOV\ comSists of So\lﬁc]'OV\S. Each
solution is called an individual.

Individuals are subjedred to
rZ\-V\dO’YV\ mwinoy I s
W\odi{-ications,

-
""""

i) EIDIM

Evaluation

The West individuals
are seleded %or
croSsover.

Two randowm individuals
are vecombpimed toee ..o
produce mew Solvtions. |

Crossover Selection

Existing Tools

How to Experiment?

Flexibility & Scalability

BT

S e e

Tools used in literature

Tools used to evaluate solutions to the NFV-RA problem

12
12

N

Chart: Theviyanthan - Created with Datawrapper

w
@ @ OpenNetVM OpenStack Others

Research Gap

* Simulators such as ALEVIN do not provide an accurate evaluation
of fithess.

 Testbeds are not scalable.

* Emulators such as Mininet need additional code to support SFC
experiments.

There exists no SFC-specific emulator.

https://github.com/Project-Kelvin/OpenRASE

Host

...................... A Virtual Network
Function such as
firewall. These are
Docker containers.

VNF 1 VNF2 &

_ Directs the HTTP traffic through the
Generates HTTP traffictobe sent right SFC using the SFC IDinthe HTTP ~~~ S—— ...
through SFCs. Header. .

’
’

I
I
L}
n
1
1
1

real Open vSwitches. The
switches are controlled using
the Ryu SDN controller.

>

n

,
r
r
1

A GET REST API'endpoint that
serves the HTTP traffic.

Traffic Generator

/N
A4

/N
W

A Docker container that emulates a server. This
container runs a Docker-in-Docker image
allowing VNFs to be nested as Docker
containers. “

Service Function Forwarder
SFF forwards the traffic to a specific
VNF in the host. Each host has its
own dedicated SFF running in a
separate Docker container.

Evaluation

Experimental Goals

* We demonstrated that:
* OpenRASE can replicate ALEVIN for static metrics
* OpenRASE can run experiments and produce dynamic metrics

Experimental Design

[E==zzil) [F=z==iW)| |[E==

\

* Four unique SFC Requests (SFCRs) were de.si.ghe'd. .a'sed oh |
examples from the literature.

* The greedy Dijkstra algorithm available by default in ALEVIN was
used to embed SFCs.

* The acceptance ratio (no. of SFCRs that can be embedded divided
by the total no. of SFCRs received), CPU usage of hosts and traffic
latency of SFCs were measured.

* 8 experiments were carried out by varying the no. of SFCRs and
the no. of CPUs available to hosts.

Results

1 . . SFCRs Submitted Acceptance Ratio Deployment Time (s)
Experiment CFUs per host Duplicates SFCRs OpenRASE ALEVIN OpenRASE
1 2 | 4 1 1 34.02
2 2 2 8 1 1 44.43
3 2 4 16 1 1 75.76
4 2 8 32 0.75 0.75 90.81
5 4 I 4 1 1 28.58
6 4 2 8 1 1 34.39
7 4 4 16 1 1 55.04
8 4 8 32 1 1 110.69

* OpenRASE was able to replicate ALEVIN’s outputs when it comes
to static metrics like acceptance ratio.

* ALEVIN, being a simulator, cannot measure dynamic metrics like
CPU usage and latency, which OpenRASE is able to.

CPU Usage

4 SFCRs and 2 CPUs each in a host 4 SFCRs and 4 CPUs each in a host
100 100
host host
w1 -—
— no - MO0
5 — % —
- m2 - 2
7 —m g — m3
% — a4 g — na
)
g 50 — h2 §' 50 — 2
5 5
> —hn 5 — n3
o a
o — 1 o —
S a e — hs —n
25 — hé 2 — "
- T —
— h8 \/ — 8
w— -
) o
0 200 400 600 o 200 400 600
Time (s) Time (s)
8 SFCRs and 2 CPUs each in a host 8 SFCRs and 4 CPUs each in a host
100 100
host host
w— it — M
— h10 — hi0
I — hit 7% —
— h12 — h12
§ — h13 S‘e‘ — hi3
° — h4 g — hi4
S -3
8 50 —hn &0 — 2
5 E]
S —hm 5 —m
& —m & —
i 1 -
25 ~— hé 25 — he
w7 - AF
I e
S O w—
o o
o 200 400 600 0 200 400 600
Time () Time (s)
16 SFCRs and 2 CPUs each in a host 16 SFCRs and 4 CPUs each in a host
100 100
host host
-t -
=0 — ho
75 - 7% —
-2 e’ W12
§ - n3 § -— M3
> — b4 g s==hig
§’ 50 —h2 ? 50 —_n
E 5
> —h -~ iy
o a
o - hs o -0
[— - hs
25 I i { ~ h6 2 —
A\ WN)! M z A AU~ o | K
"\.‘\ }‘] \“'\’4‘ h') \ f ! A B iy o — — nr
o5 ; bk X v iV Zxe ki b —
N"WV“ U ~ hg —n
0 A o
o 200 400 800 o 200 400 600
Time (s) Time (s)
32 SFCRs and 2 CPUs each in a host 32 SFCRs and 4 CPUs each in a host
100 100
host host
w1 - M
— h10 — ho
7S — h1t 75 — m
— h12 — M2
§ — h13 g - M3
° — 4 g — hi4
s
g s0 — h2 § 50 — n2
5 5
> —h 3 =iy
a o
o — h4 (%] —
st B — b
25 — hé 25 — "
— h7 - Ky
O =
— M

Time ()

Traffic Latency

20000

15000

10000

Latency (ms)

§
&

20000

15000

Latency (ms)

10000

20000

15000

Latency (ms)

10000

15000

10000

Latency (ms)

Experiment 1 4 SFCRs and 2 CPUs each in a host

o

|
A
'j" v”tl ’:'J“-;q ”L!'} ‘ ;ﬁl t\' .

200

mn
‘!f) L

ll‘
i‘, !

.}"1 i

Time (s)

Experiment2 8 SFCRs and 2 CPUs each in a host

A

ik

llll

u\

\‘ Md | “,«n.l |.11

200

Time (s)

400

Experiment3 16 SFCRs and 2 CPUs each in a host

Time (s)

Experiment4 32 SFCRs and 2 CPUs each in a host

400

800

600

sfe

— slc00-tree
— sfc0-1-three
— sicO2-tree
— sicO-3-ree
— sicO--tree
— sic0-5-tree
— sicO6-tree
— stcd-T-three
— sfot-dthree
— sfct-t-three
— sfct-24hree
— sfci-dthree

sfc

— sic00-two
— sic0-1-two
— sfcl04wo
— sict-1-wo
— sic20-wo
— sic2-1-wo
— sic30wo
— sicd-1-wo

sfe

= slc0-0four

= sfc0-1-four 20000
— slc0-2-four
— sfc0-3-four
— sfe10our
— sfe1-1-four
— sle12our
— sfe1-3four
— slc2-0four
— sfe2-1-four
— slc2:2-our
— sfe2-3four
— sfc3.0-four
= sle3-1-four
— sfe3-2four
= sfe3-3-four 0

Latency
Experiment5 4 SFCRs and 4 CPUs each in a host

20000

sfe

— sfc-cne
— sfet-one
— sfcz-one
— sfe3-one

Lalancy (ms)

“l liA, II'I)L. ‘H“'H h, ‘,,Ii\ ! MHH“ I'l l “‘](]

o 200 400 600
Time (s)

Experiment6 8 SFCRs and 4 CPUs each in a host

20000

Latency (ms)

400
Time (s)
Experiment 7 16 SFCRs and 4 CPUs each in a host

§

Latency (ms)

10000

Time (s)
Experiment 8 32 SFCRs and 4 CPUs each in a host

sfot-d-tvee
sfot-S-thvee 9000
sfet-ahree
sfct-7-three
sfc2-0-tvee
sfe2-1-thvee
sfc2-2-vee
sfe2-34hvee
sfc2-4-tvee
sfc2-5-thvee
sfc26-tvee
sfe2-7-three

6000

Latency (ms)

3000

sfe

- sfcO-fve
— sfet-fve
— ste2-fve
- sfe3fve

sfc

— sfc0-0-six
— sfc0-1-six
— sfc1-0-six
— sfol-1-six
— sfc2-0-six
— sfc2-1-5ix
— sfc3-0-six
— sfc3-1-six

&

sfcD-0-eight
sc0-1-eight
s1c0-2-eight
sfc0-3-eight
sfc1-0-eight
sfel-1-eight
sfe1-2-eight
sfe1-3-eight
sfc2-0-eight
sfe2-1-eight
s1c2-2-eight
sfe2-3-eight
s1c3-0-eight
sfe3-1-eight
ste3-2-eight
ste33-eight

1501 L R0 1 o 8 I N 8

— sfc2-0-seven
— sfe2-1-seven
— sfc2-2-seven
— sfc2-3-seven
— sfe2-4-seven
— sfc2-5-seven
— sfc2-6-seven
—— sfe2-7-seven
— sfc3-0-seven
— sfc3-1-seven
— sfc3-2-seven
— sfc3-3-seven
— sfc3-4-seven
— sfc3-5-seven
— sfc3-6-seven

— sfc3-7-seven

Summary

* Optimally embedding SFCs is NP-hard.

* GAs one way of solving this problem. But they require a way to
evaluate solution fithess.

* We need an emulator as they are more scalable than testbeds and
more accurate than simulators.

* We created OpenRASE to emulate SFCs.

OpenRASE is Open Source!

* You can use it for your SFC experiments.
* Your contributions are welcome!

https://github.com/Project-Kelvin/OpenRASE

Questions

Thank You

Appendix

Why Genetic Algorithms?

* |Itis a heuristic algorithm that can solve NP-hard problems.
* |t can adapt to an uncertain/unknown environment.

* Itis an underutilised algorithm in the SFC realm. Only 12/163
surveyed studies use GAs.

ALEVIN vs. OpenRASE

Test Simulated Emulated.

Hosts Simulated Docker containers as hosts

Switches Simulated Open vSwitches using Mininet

VNFs Simulated & abstract 7 distinct, real VNFs. Allows addition of
more VNFs

VNF resource requirements Arbitrary, static, & user-specified VNF demands are calibrated through
benchmarking

VNF behavior Static Dynamic based on input traffic

Deployment Simulated Emulated real code deployment using
Docker containers and Mininet

Programming language Java based Python based

Tool resource requirements Low High

Use case Rapid designing and prototyping High-fidelity testing

New resource demands and metrics Can be added Adding new demands and metrics need

changes to the emulator

	Slide 1: OpenRASE: Service Function Chain Emulation
	Slide 2
	Slide 3: Background
	Slide 4: What are Service Function Chains (SFCs)?
	Slide 5: Optimisation Challenges
	Slide 6: Genetic Algorithm
	Slide 7: Existing Tools
	Slide 8: How to Experiment?
	Slide 9: Tools used in literature
	Slide 10: Research Gap
	Slide 11
	Slide 12
	Slide 13: Evaluation
	Slide 14: Experimental Goals
	Slide 15: Experimental Design
	Slide 16: Results
	Slide 17: CPU Usage
	Slide 18: Traffic Latency
	Slide 19: Summary
	Slide 20: OpenRASE is Open Source!
	Slide 21: Questions
	Slide 22: Thank You
	Slide 23: Appendix
	Slide 24: Why Genetic Algorithms?
	Slide 25: ALEVIN vs. OpenRASE

