
OpenRASE: Service Function Chain 
Emulation
Theviyanthan K.



Theviyanthan Krishnamohan (Thivi)
Third-year PhD student,
University of Glasgow.
t.krishnamohan.1@research.gla.ac.uk



Background



What are Service Function Chains (SFCs)?

• SFCs combine Network Function Virtualisation and Software-
Defined Networking and create a service overlay over the physical 
network.

A traditional network: A Service Function Chain:



Optimisation Challenges

• This is an NP-hard optimisation problem [1].

1. Chain composition

How should the Virtual Network 
Functions (VNFs) be ordered for 

optimal performance?

2. VNF embedding

Where should the VNFs be 
deployed for optimal 

performance?

3. Link embedding

How should the VNFs be linked for 
optimal performance?

[1] J. Gil Herrera and J. F. Botero, "Resource Allocation in NFV: A Comprehensive Survey," in IEEE Transactions on Network 
and Service Management, vol. 13, no. 3, pp. 518-532, Sept. 2016, doi: 10.1109/TNSM.2016.2598420. 



Genetic Algorithm



Existing Tools



How to Experiment?



Tools used in literature

Simulators

Emulator



Research Gap

• Simulators such as ALEVIN do not provide an accurate evaluation 
of fitness.

• Testbeds are not scalable.
• Emulators such as Mininet need additional code to support SFC 

experiments.

There exists no SFC-specific emulator.



https://github.com/Project-Kelvin/OpenRASE





Evaluation



Experimental Goals

• We demonstrated that:
• OpenRASE can replicate ALEVIN for static metrics
• OpenRASE can run experiments and produce dynamic metrics



• Four unique SFC Requests (SFCRs) were designed based on 
examples from the literature.

• The greedy Dijkstra algorithm available by default in ALEVIN was 
used to embed SFCs.

• The acceptance ratio (no. of SFCRs that can be embedded divided 
by the total no. of SFCRs received), CPU usage of hosts and traffic 
latency of SFCs were measured. 

• 8 experiments were carried out by varying the no. of SFCRs and 
the no. of CPUs available to hosts.

Experimental Design



Results

• OpenRASE was able to replicate ALEVIN’s outputs when it comes 
to static metrics like acceptance ratio.

• ALEVIN, being a simulator, cannot measure dynamic metrics like 
CPU usage and latency, which OpenRASE is able to.



CPU Usage



Traffic Latency



Summary

• Optimally embedding SFCs is NP-hard.
• GAs one way of solving this problem. But they require a way to 

evaluate solution fitness.
• We need an emulator as they are more scalable than testbeds and 

more accurate than simulators.
• We created OpenRASE to emulate SFCs.



OpenRASE is Open Source!

• You can use it for your SFC experiments.
• Your contributions are welcome!

https://github.com/Project-Kelvin/OpenRASE



Questions



Thank You



Appendix



Why Genetic Algorithms?

• It is a heuristic algorithm that can solve NP-hard problems.
• It can adapt to an uncertain/unknown environment.
• It is an underutilised algorithm in the SFC realm. Only 12/163 

surveyed studies use GAs.



ALEVIN vs. OpenRASE
ALEVIN OpenRASE

Test Simulated Emulated. 

Hosts Simulated Docker containers as hosts

Switches Simulated Open vSwitches using Mininet

VNFs Simulated & abstract 7 distinct, real VNFs. Allows addition of 
more VNFs

VNF resource requirements Arbitrary, static, & user-specified VNF demands are calibrated through 
benchmarking

VNF behavior Static Dynamic based on input traffic

Deployment Simulated Emulated real code deployment using 
Docker containers and Mininet

Programming language Java based Python based

Tool resource requirements Low High

Use case Rapid designing and prototyping High-fidelity testing

New resource demands and metrics Can be added Adding new demands and metrics need 
changes to the emulator


	Slide 1: OpenRASE: Service Function Chain Emulation 
	Slide 2
	Slide 3: Background
	Slide 4: What are Service Function Chains (SFCs)?
	Slide 5: Optimisation Challenges
	Slide 6: Genetic Algorithm
	Slide 7: Existing Tools
	Slide 8: How to Experiment?
	Slide 9: Tools used in literature
	Slide 10: Research Gap
	Slide 11
	Slide 12
	Slide 13: Evaluation
	Slide 14: Experimental Goals
	Slide 15: Experimental Design
	Slide 16: Results
	Slide 17: CPU Usage
	Slide 18: Traffic Latency
	Slide 19: Summary
	Slide 20: OpenRASE is Open Source!
	Slide 21: Questions
	Slide 22: Thank You
	Slide 23: Appendix
	Slide 24: Why Genetic Algorithms?
	Slide 25: ALEVIN vs. OpenRASE

